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[1] The effect of orbital sampling is one of the chief uncertainties in satellite–climate
model comparisons. In the context of an ongoing activity to make satellite data more
accessible for model evaluation (i.e., obs4MIPs), six variables (temperature, specific
humidity, ozone, cloud water, cloud cover, and ocean surface wind) associated with six
satellite instruments are evaluated for the orbital sampling effect. Comparisons are made
between reanalysis and simulated satellite-sampled data in terms of bias and pattern
similarity. It is found that the bias introduced by orbital sampling for long-term annual
means, monthly climatologies, and monthly means is largely negligible, which is within
~3% of the standard deviation of the three quantities for most fields. The bias for 2-hPa
temperature and specific humidity, while relatively large (9–10%), is within the estimated
observational uncertainty. In terms of pattern similarity, cloud water and upper level
specific humidity are the most sensitive to orbital sampling among the variables
considered, with the magnitude of the sampling effect dependent on the spatial
resolution—insignificant at 1.25� � 1.25� resolution for both. For all variables considered,
orbital sampling effects are not an important consideration for model evaluation at
1.25� � 1.25� resolution. At 0.5� � 0.5�, orbital sampling is potentially important for cloud
water and upper level specific humidity when evaluating model long-term annual means
and monthly climatologies, and for cloud water when evaluating monthly means, all in
terms of pattern similarities. Orbital sampling is not an important factor for evaluating
zonal means in call cases considered.
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1. Introduction

[2] The wealth of information provided by Earth-observ-
ing satellites has greatly advanced our understanding of
the earth system and our ability to forecast its behavior. An
important use of satellite observations is the evaluation of
global climate models. Compared to observations from
other platforms, satellite observations have the advantage
of increased spatiotemporal coverage, which facilitates
model evaluation on a global scale. Currently, active satellite
missions are monitoring most components of the climate
system. For some variables, nearly a decade of satellite
observations have been accumulated (e.g., the A-Train
observations). For many with an operational component,
the length of satellite record is up to two decades or more

(e.g., outgoing longwave radiation [OLR], sea level, sea sur-
face temperature [SST], etc.). These will provide more and
improved opportunities for satellite-based model evaluation
in the coming decades.
[3] A practical difficulty in the evaluation of global mod-

els with satellite data concerns the particular space-time
sampling of the satellites. For example, a polar-orbiting sat-
ellite samples the globe with gaps in time and space deter-
mined by the orbital character, instrument swath, etc., and
a geostationary satellite provides relatively continuous mon-
itoring in time but only for a certain portion of the globe. For
evaluation of climate models, satellite observations will be
most useful if provided in a manner that is compatible with
the model output. Under the recently initiated obs4MIPs
project [Gleckler et al., 2011; Teixeira et al., 2011; http://
obs4mips.llnl.gov:8080/wiki/] which aims to make satellite-
based (and other observationally-based) data more
accessible for climate model evaluation, the National
Aeronautics and Space Administration (NASA), in
collaboration with the Department of Engergy (DOE) and
the National Oceanic and Atmospheric Administration
(NOAA), is preparing a suite of well established satellite
products that closely follow the Coupled Model Intercom-
parison Project Phase 5 (CMIP5) simulation protocol [Taylor
et al., 2012]. Eighteen such products have been made avail-
able to the science community through the Earth System
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Grid Federation [ESGF; Williams et al., 2009], which offi-
cially hosts the CMIP5 model output.
[4] Efforts like obs4MIPs make satellite–model compari-

sons easier. On the other hand, it remains to be fully under-
stood to what extent the particular space-time sampling of
the atmosphere by satellites as opposed to the regular and
continuous sampling by global models affects the results
and interpretation of the comparison between satellite obser-
vations and model simulations. Conceptually, the effect of
orbital sampling can be evaluated by comparing the “true”
geophysical state and the satellite-sampled state. When lack-
ing ground-truth observations, the former has often been
approximated either by statistical models [Laughlin, 1981;
North et al., 1993; Bell and Kundu, 1996; Soman et al.,
1996] or general circulation models [GCMs; Engelen
et al., 2000; Lin et al., 2002; Luo et al., 2002; Li et al.,
2007; Aghedo et al., 2011]. These studies documented the
orbital sampling effect for selected satellites/instruments
(TIROS/TOVS, TRMM/TMI, TRMM/PR, TRMM/VIRS,
TRMM/CERES, Aura/TES, Aura/MLS) and geophysical
variables (brightness temperature, precipitation, OLR,
ozone, carbon monoxide, cloud ice, water vapor, tempera-
ture). These studies were often based on observations from
a limited area and/or a short period of time. Since the differ-
ence between the complete spatiotemporal field and the
satellite-sampled field is a function of not only the orbital
geometry but also the statistical characteristics of the
geophysical variable itself [Bell et al., 1990; Li et al., 1996],
it is not clear to what extent the results based on a limited area
can be applied to other areas of the world [North, 1988], and to
what extent the evaluation based on modeled atmosphere
represents the sampling effect on real atmosphere. As such,
more comprehensive assessments are needed, especially in
the context of ongoing international efforts for model evalua-
tion (e.g., CMIP5) and making satellite observations more
suitable for doing that (e.g., obs4MIPs). In this regard, a
question of key interest that remains to be addressed is
whether orbital sampling affects the statistical characteristics
of the long-term annual mean, monthly climatology (i.e., the
12-month annual cycle), and monthly means (over a relatively
long period of time) of a geophysical variable. Both bias and
pattern similarity between the complete and satellite-sampled
data are of interest since these two aspects are both important
and routinely examined when evaluating climate models [e.g.,
Randall et al., 2007]. It is noted that most previous studies
were focused on the bias or total root-mean-square (RMS)
error of the sampled data, leaving quantitative comparison of
pattern similarity largely unexplored.
[5] Reanalysis data are used in the current study as a more

realistic approximation of the real atmosphere for evaluating
the orbital sampling effect. In the context of CMIP5 and
obs4MIPs, six variables associated with six NASA satellite
instruments are considered in our analysis, which represent
a cross section of variables that are well established and
documented, and useful to the modeling and model evalua-
tion community. Consideration of a variety of satellite
instruments and variables in the same analysis also facili-
tates direct comparisons of their relative sensitivity to orbital
sampling, an aspect lacking in previous studies. A variable
of particular interest is cloud water, which critically affects
radiative budgets of the atmosphere [e.g., Waliser et al.,
2011], yet bears a key shortcoming in global climate models

[e.g., Waliser et al., 2009; Li et al., 2012a, 2012b]. The
evaluation of modeled cloud water has become possible
relatively recently using satellite observations [Li et al.,
2005, 2007, 2012a, 2012b; Su et al., 2006; Jiang et al.,
2010, 2012], for which the effect of orbital sampling remains
to be explored, especially relative to other variables of interest.
[6] Several obs4MIPs products involve merging of data

from different observational platforms. For example, the
CERES top-of-atmosphere radiative fluxes for CMIP5
merges observations from sun-synchronous satellite and
multiple geostationary satellites for improved representation
of the diurnal cycle (http://ceres.larc.nasa.gov/cmip5_data.
php). Similarly, TRMM 3B42 precipitation is a merged
product based on many sources for improved spatial cover-
age and data quality [Huffman et al., 2007]. The variables
related to these data sets are not considered in the current
analysis since the comparison of these data sets to models
not only depends on orbital characters of the satellites, but
also the particular technique used to merge data from various
platforms.

2. Data and Methods

2.1. Data

[7] Reanalysis data with sub-daily time steps are used as
an approximation of the real atmosphere. Noting that each
reanalysis product has its own biases and limitations, two
reanalysis products, namely, the National Centers for Envi-
ronmental Prediction (NCEP) Climate Forecast System
Reanalysis [CFSR; Saha, 2010] and NASA Modern-Era
Retrospective Analysis for Research and Applications
[MERRA; Rienecker et al., 2011], are separately analyzed,
with the difference between the two products serving as a
rough measure of the current observational uncertainty.
CFSR is an operational, real-time product that features the
coupling between the atmosphere, ocean, land surface, and
sea ice components during data assimilation. MERRA is a
near-real-time product with a special aim to improve the
representation of the global hydrological cycle. While many
aspects of the two reanalysis products are similar, differ-
ences are substantial for precipitation and other cloud-related
variables that are still poorly constrained in these systems
[Rienecker et al., 2011]. Six variables from each reanalysis
product are considered, which are vertical profiles of
temperature, specific humidity, ozone mixing ratio, cloud water
(ice + liquid) mixing ratio, column total cloud cover, and ocean
surface wind. The CFSR product used has a 6-hour time step,
with a horizontal resolution of 0.5� � 0.5�. The MERRA
product used has a 3-hour time step, with a 1.25� � 1.25�
resolution. For reference, the CMIP5 coupled models have a
spatial resolution of ~0.5–4� for the atmospheric component
[Taylor et al., 2012]. Nine standard pressure levels between
1000- and 2-hPa inclusive are extracted for all vertical
profiles except CFSR cloud water for which one less level
(i.e., 2-hPa) is available. The main analysis covers the period
of 2000–2010. Sensitivity to analysis period and spatiotempo-
ral resolution will be addressed.

2.2. Sampling Method

[8] Each of the above variables is associated with one or
more NASA satellite instruments that enter the ESGF
(http://esg-datanode.jpl.nasa.gov) under obs4MIPs. The
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orbital sampling effect is evaluated for each variable for one
or two satellite instruments that are considered the most
relevant for the given variable, as listed in Table 1. Two
instruments listed (AIRS, MODIS) are aboard the Aqua
satellite, two (MLS, TES) are aboard Aura, one (CPR) on
CloudSat, and one (SeaWinds) is carried by QuikSCAT.
Aqua, Aura, and CloudSat fly a few minutes apart in sun-
synchronous orbits, cross the equator around 1:30 pm and
1:30 am local standard time, and complete about 15 orbits
per day. They form the A-train satellite constellation
[L’Ecuyer and Jiang, 2010] together with other satellites.
QuikSCAT also flys in sun-synchronous orbits, with equator
crossing time around 6:00 pm and 6:00 am, and completes
about 14 orbits per day. Figure 1a shows the A-Train and
QuikSCAT orbits over a given 24-hr period.
[9] Satellite sampling is simulated for the above instru-

ments with the reanalysis data as input. The actual satellite
products are not used. For each reanalysis time step t at inter-
val Δt, orbital sampling is simulated by setting the grid cells
not viewed by a particular instrument during t�Δt/2 and
t+Δt/2 to undefined, considering both the location of the
satellite and the swath width of a particular instrument. For
a grid cell to be viewable, at least part of its area should fall
within the swath of an instrument. Monthly means are then
obtained from the complete reanalysis data (hereafter, raw
data) and simulated satellite-sampled data, respectively,
from which the monthly climatology (i.e., the long-term
mean of each month) and long-term annual mean is further
obtained.
[10] For a given month and a given pixel, the difference

between raw and sampled data will be dependent on the
number of reanalysis time steps sampled over the given
month [e.g., Lin et al., 2002]. Figure 1b shows the zonally-
averaged frequency (percent 6- or 3-hourly time steps) each
reanalysis pixel is sampled over a given month. Sampling
frequencies are considerably high for instruments with big
swaths (Figure 1b, lower 3 panels), and in general higher to-
ward the polar regions. For instruments with single footprint
swaths (Figure 1b, upper 3 panels), sampling frequencies are
notably low (<2% in the tropics and extratropics). Figure 1b
suggests that for instruments with swaths much smaller than
the grid size, sampling frequency is dependent on both
the time interval and grid size of the data being sampled
(Figure 1b, upper 3 panels). In this regard, the coarser spatial
resolution of MERRA (by a factor of 2.5) more than com-
pensates for the higher temporal resolution (by a factor of
2), resulting in a 25% higher sampling frequency than for
CFSR. For instruments with swaths much larger than the
grid size (Figure 1b, lower 3 panels), sampling frequency

becomes insensitive to the grid size; in this case, sampling
frequency for CFSR is twice that for MERRA due to the
factor of 2 difference in the temporal resolution. These
factors need to be taken into account when comparing the
sampling effect between CFSR and MERRA.
[11] Examples of raw and satellite-sampled data are

shown in Figure 2 (left 2 columns) for an arbitrary month
and selected CFSR fields. Raw and sampled fields are very
similar for AIRS temperature and specific humidity profiles,
MODIS cloud cover, and QuikSCAT ocean surface wind.
For MLS and TES, satellite-sampled data capture the broad

Table 1. Variables and Corresponding Satellites/Instruments to be
Assessed for Orbital Sampling Effect

Variable Satellite Instrument (Swath)

Temperature & Specific
Humidity: ≥300 hPa

Aqua AIRS (1650 km)

Temperature & Specific
Humidity: <300 hPa

Aura MLS (7 km)

Ozone Mixing Ratio Aura TES (5.3 km)
Cloud Water Mixing Ratio CloudSat CPR (1.4 km)
Column Total Cloud Cover Aqua MODIS (2330 km)
Ocean Surface Wind QuikSCAT SeaWinds (1800 km)

Figure 1. (a) A-Train and QuikSCAT orbits over a given
24-hr period. (b) Frequency (percent 6- or 3-hourly time steps)
at which each CFSR (blue) and MERRA (green) grid cell is
sampled by various satellite instrument during a given 31-day
period (i.e., 124 time steps for CFSR, and 248 time steps for
MERRA), shown in zonal averages as a function of latitude.
For QuikSCAT, sampling frequency is counted over ocean
grids only. Note larger scales for the lower three panels.
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scale patten of the fields, but not the details. The visually
largest difference is for CloudSat/CPR. For each of these
instruments, the degree of closeness between raw and sam-
pled data is consistent with the swath width (Table 1) and
hence sampling frequencies (Figure 1b).

2.3. Evaluation Method

[12] The effect of orbital sampling is evaluated for the
long-term annual mean, monthly climatology, and monthly

means, respectively, based on raw and satellite-sampled
data. Raw and sampled data are compared in terms of bias
(i.e., overall difference over time and space), and pattern
similarity represented by standard deviation ratio (sampled
data standard deviation divided by raw data standard devia-
tion), correlation, and centered RMS error (i.e., RMS error
between two fields after they are centered by their respective
means). Each two of the latter three quantities determine the
other one, and all three can be shown succinctly in Taylor

Figure 2. (left 2 columns) Example monthly means over an arbitrary month based on (left) raw and (center)
satellite-sampled 6-hourly CFSR fields. (right) Mean difference between sampled and raw data over the period
of 2000 –2010. Each row is for a different variable. For vertical profiles, only one representative level is shown
for each satellite instrument. Cloud water includes both ice and liquid water throughout this paper.
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diagrams [Taylor, 2001]. In the Taylor diagrams to be
shown (e.g., Figure 3), the distance between any point in
the plot and the origin point indicates the standard deviation
ratio of sampled to raw data (abscissa and ordinate), the
azimuthal angle of any point relates to the correlation between
raw and sampled data (scale on the arc), the point with standard
deviation ratio one and correlation one (the reference point)
corresponds to the raw reanalysis data, and the distance
between any point and the reference point indicates the
centered RMS error. As can be shown, centered RMS error
and bias add quadratically to the total RMS error [Taylor, 2001].

3. Results

3.1. Long-Term Annual Means

[13] Long-term annual means are compared between raw
and sampled data for six variables in Figure 3 in terms of
pattern similarity. Results based on CFSR and MERRA are

shown in the left and center columns, respectively. Since
the reanalysis data themselves are subject to uncertainty,
which needs to be quantified, the right column compares
raw CFSR/MERRA to their mean. The red “box” in each
panel delineates the range of the standard deviation ratios
and correlations shown in the right column, as a rough esti-
mate of the observational uncertainty [e.g., Li et al., 2012a].
In this regard, the difference between raw and sampled data
will be deemed as significant if larger than the estimated
observational uncertainty.
[14] Based on the above criteria, temperature and ozone

profiles, column total cloud cover, and ocean surface wind
show insignificant difference between raw and sampled data.
For these variables, the uncertainty of the reanalysis data
themselves are also relatively small. Significant differences
between raw and sampled data are seen for CFSR specific
humidity at 100- and 50-hPa levels and for CFSR cloud
water at the 100-hPa level, which are contributed by both

Figure 3. Taylor diagrams showing the comparison of the long-term annual means between raw (the
reference point) and satellite-sampled fields based on (left) CFSR and (center) MERRA, and (right) between
raw CFSR/MERRA and their mean (the reference point). Each row is for a different variable. The red “box”
in each panel represents the uncertainty of the reanalysis data determined by standard deviation ratio and
correlation ranges shown in the right column. For ocean surface wind, the statistics are first calculated separately
for the zonal and meridional components, and then averaged. Note different scale for cloud water.
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differing magnitudes of standard deviations and weak corre-
lations. For these two variables, the difference between raw
CFSR and MERRA is also considerably larger than for other
variables. The sampling effect is consistently larger with
CFSR, which is most likely due to the finer spatial resolution
(to be addressed in section 4).
[15] Zonal means are often calculated when evaluating

climate models [e.g., Randall et al., 2007]. Zonal mean
specific humidity is used here to illustrate the orbital sam-
pling effect in this regard. Specific humidity is considered
due to its relatively large sensitivity to orbital sampling as
seen in Figure 3. The observational uncertainty (i.e., the
red “box”) remains nearly unchanged for the zonal means
(cf. Figure 4 and 2nd row of Figure 3). On the other hand,
the sampling effect becomes much smaller and insignificant
(Figure 4).

3.2. Monthly Climatologies

[16] Similar comparisons for monthly climatologies (i.e.,
long-term means of each month) are shown in Figure 5.
Much as in the case of long-term annual means, temperature
and ozone profiles, column total cloud cover, and ocean

surface wind show insignificant difference between raw
and sampled data. For these variables, the uncertainty of
the reanalysis data themselves are also relatively small. Sig-
nificant differences between raw and sampled data are seen
for CFSR specific humidity at 100- and 50-hPa levels and
for CFSR cloud water at 700-, 500-, 200-, and 100-hPa
levels. For these two variables, raw CFSR and MERRA also
differ significantly. The sampling effect is, again, consis-
tently larger with CFSR.
[17] Next, zonal mean cloud water is examined. Cloud

water is considered due to its relatively large sensitivity to
orbital sampling as seen in Figure 5. The overall sampling
effect is insignificant compared to the observational uncer-
tainty (Figure 6a). A more detailed examination is given by
the latitude-height cross sections (Figure 6b). The orbital sam-
pling effect in this case is dominated by different standard
deviations between the raw and sampled data (Figure 6b, left
panels), as correlations are in general high (Figure 6b, center
panels) and biases low (Figure 6b, right panels). Beside
height-dependence, as already seen in Figure 5, latitudinal de-
pendence is evident in Figure 6b (left panels). Both CFSR and
MERRA show largest sensitivity to orbital sampling at the

Figure 3. (continued)
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Figure 4. As the 2nd row in Figure 3 except for the zonal mean field.

Figure 5. As Figure 3 except for monthly climatologies.
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Figure 5. (continued)
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upper levels. Latitudinally, the two differ with respect to the
locations of the largest sampling effect.

3.3. Monthly Means

[18] Similar comparisons are done for monthly means of
raw and sampled data (Figure 7). Compared to other vari-
ables, CFSR cloud water shows exceptionally large and
significant sensitivity to orbital sampling, and the sensitivity
is larger than in the case of monthly climatologies at all ver-
tical levels (cf. Figure 5). Raw CFSR and MERRA also dif-
fer significantly, and by a larger extent than in the cases of
long-term annual mean and monthly climatology. As in
those cases, orbital sampling effect is consistently larger
with CFSR.
[19] Again, zonal mean cloud water is examined. The

overall sampling effect becomes much smaller and insignif-
icant (Figure 8a). Latitude-height cross sections show that
the orbital sampling effect is contributed by both standard
deviation ratios (Figure 8b, left panels) and correlations

(Figure 8b, center panels); more so for CFSR. Relatively
large sensitivity to orbital sampling is seen for CFSR at al-
most all levels, while at selected levels for MERRA. The
two also differ with respect to the latitudinal locations of
the largest sampling effect.

3.4. Bias

[20] Bias of the sampled data normalized by the standard
deviation of the long-term annual mean of the raw data is
listed in Table 2. For the cases of monthly climatology and
monthly means, percent biases are smaller since the denomi-
nators used for normalization are larger (not shown). Except
for 2-hPa temperature and specific humidity, the bias of the
sampled data is within ~3% of the standard deviation of the
raw data. As such, the total RMS difference between raw
and sampled data is largely determined by the degree of
pattern similarity (as discussed in sections 3.1), not the
difference in the overall magnitude. Relatively large percent
biases (9–10%) for 2-hPa temperature and humidity is a

Figure 6. (a) As the 4th row in Figure 5 except for the zonal mean field. (b) Latitude-height cross sec-
tions of (left) standard deviation ratio, (center) correlation, and (right) normalized bias between zonal
mean raw and satellite-sampled cloud water based on (upper) CFSR and (lower) MERRA.
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Figure 7. As Figure 3 except for monthly mean fields.
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result of relatively small standard deviation of the raw data at
this level; in these cases, the absolute sampling biases
are ~0.3K and 1E�8 kg/kg, respectively, which are much
smaller than the mean difference between raw data from the
two reanalysis products themselves, i.e., the sampling biases
are within the estimated raw data uncertainty. These results
suggest that the bias of the sampled data is largely negligible.
Similar conclusions have been made by Aghedo et al., [2011]

for the TES instrument for zonal mean ozone, carbon monox-
ide, and water vapor based on four years of data from two
climate chemistry models. Larger percent biases (~10–20%)
were reported for the same instrument by Luo et al., [2002]
for ozone and carbon monoxide from a climate chemistry
model, on a single day basis. Using GCM, Lin et al., [2002]
evaluated the orbital sampling effect for the TRMM satellite
and found OLR sampling bias of less than 5%, but

Figure 7. (continued)
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precipitation sampling bias of 20–40%, on a single month
basis. Engelen et al., [2000] found up to 5–7K differences
between GCM and satellite-sampled brightness temperatures
for a single month. Relatively large biases were also shown
by Li et al., [2007] for MLS cloud ice based on one year of
the European Centre for Medium-Range Weather Forecasts
(ECMWF) analysis data. Comparison of these results
suggests that the magnitude of the sampling bias is partly
dependent on the time scale of interest.
[21] Spatial distribution of the sampling bias (not

normalized) is shown in Figure 2 (right column). Land/
sea dependence is most evident for 1000-hPa temperature,
humidity, ozone, and column total cloud cover, due pre-
sumably to the different magnitudes of the diurnal cycle
over land and sea. Latitudinal dependence is strongest
for 200-hPa temperature and humidity, likely related to
the gradients of these variables at different latitudes.
Large-scale patterns characteristic of zonal wavenumber
4 are evident for ocean surface wind and column total
cloud cover, which could be associated with atmospheric
tides [van den Dool et al., 1997].

4. Sensitivity to Spatiotemporal Resolution and
Analysis Period

[22] In this section, we perturb a few aspects of the main
analysis presented above and test the stability of the results
obtained. For brevity, the tests focus on the case of monthly
climatology, and on one variable, i.e., cloud water, which
shows the largest orbital sampling effect relative to other
variables and also the largest difference between the two
reanalysis products. To be examined here is whether
the sampling results are sensitive to the spatiotemporal
resolution of the input data and the analysis period. The
configuration for four test analyses are listed in Table 3
alongside two control analyses that have already been dis-
cussed in section 3.2.
[23] Results of the sensitivity tests are shown in Figure 9.

For CFSR, regridding from the original 0.5� � 0.5� grid to
1.25� � 1.25� grid reduces the orbital sampling effect to
largely within the observational uncertainty (Figure 9b),
which also becomes nearly comparable to MERRA
(Figure 9c). For MERRA, regridding from the original 1.25�

Figure 8. As Figure 6 except for monthly mean fields.
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1.25� grid to 8� Lon� 4� Lat grid further reduces the
already insignificant sampling effect (Figure 9d), reassuring
insignificant sampling effect in previous model evaluation
studies based on the latter grid [e.g., Li et al., 2012a].
Reducing the temporal resolution from 3-hr to 6-hr barely
changes the sampling effect (Figure 9e), and adding 10 years
of data to the analysis only slightly changes the result
(Figure 9f). These results suggest that the orbital sampling
effect is not sensitive to reasonable changes in the temporal
resolution of the input data or the length of the analysis
period. In this regard, the relatively large sampling effect
for CFSR compared to MERRA is attributed to the finer spa-
tial resolution of CFSR. For instruments with small swaths,
sampling frequency is sensitive to the spatial resolution of
the field being sampled (Figure 1). At finer spatial resolu-
tions, the percentage of the total number of reanalysis grid
cells sampled by a given satellite instrument is reduced,
leading to larger orbital sampling effect.

5. Summary and Discussion

[24] This paper evaluates the effect of orbital sampling on
satellite–climate model comparisons. Six variables (temper-
ature, specific humidity, ozone, cloud water, cloud cover,
and ocean surface wind) associated with six satellite instru-
ments (Aqua/AIRS, Aura/MLS, Aura/TES, CloudSat/CPR,
Aqua/MODIS, and QuikSCAT/SeaWinds) are considered
which represent the suite of satellite data being made avail-
able by NASA via the obs4MIPs project. Satellite sampling
is done on 6-hourly CFSR and 3-hourly MERRA data,
based on which monthly means, monthly climatologies,
and long-term annual means are computed. Comparisons
are then made between raw and sampled data for the three
quantities, in terms of bias and pattern similarity. The results
suggest that: (1) The bias introduced by orbital sampling is

largely negligible, meaning that in nearly all cases, the errors
introduced are within ~3% of the standard deviation of the
raw data, and relatively large bias (9–10%) for 2-hPa tem-
perature and specific humidity is still within the estimated
observational uncertainty; (2) In terms of pattern similarity,
cloud water and upper level specific humidity are the most
sensitive to orbital sampling among the six variables consid-
ered, and the magnitude of the sampling effect is dependent
on the spatial resolution—insignificant at 1.25� � 1.25� res-
olution for both variables; (4) For all variables considered,
orbital sampling effects are not an important consideration
for model evaluation at the resolution of 1.25� � 1.25�; (5)
At the resolution of 0.5� � 0.5�, orbital sampling is poten-
tially important for cloud water and upper level specific
humidity when evaluating model long-term annual means
and monthly climatologies, and for cloud water when
evaluating monthly means, all in terms of pattern similari-
ties; and not an important factor to consider for temperature,
lower level specific humidity, ozone, column total cloud
cover, and ocean surface wind; (6) Orbital sampling is not
an important factor for evaluating zonal means in all cases
considered. These results are summarized in Table 4. The
two variables with the largest orbital sampling effect (cloud
water and upper level specific humidity) are associated with
two instruments (CloudSat/CPR and Aura/MLS) with small
swaths (see Table 1), which, for variables with relatively
large spatial heterogeneity, means significant undersampling
over space, hence relatively large orbital sampling effect.
[25] Besides the orbital geometry considered here, satellite

sampling is also affected by cloud filtering and other quality
screenings [Engelen et al., 2000; Aghedo et al., 2011],
which further reduces the sampling frequency. For variables
based on visible light channels, the night hemisphere does
not get sampled, which also reduces the sampling frequency.
Reduced sampling can also be caused by mechanical,

Table 3. Configuration of Control and Test Analyses for Cloud Water Monthly Climatologiesa

Spatial Resolution Temporal Resolution Time Period

CFSR Control 0.5� � 0.5� 6-hr 2000–2010
Test 1.25� � 1.25�

MERRA Control 1.25� � 1.25� 3-hr 2000–2010
Test 1 8� Lon� 4� Lat
Test 2 6-hr
Test 3 1990–2010

aOmitted for the test analyses are parameters identical to those used in the corresponding control analysis.

Table 2. Bias of the Sampled Data Normalized by the Standard Deviation of Long-Term Annual Mean of the Raw Dataa

Variable CFSR MERRA

Temperature (≥300 hPa) 0.1–1.2% 0–0.5%
Temperature (<300 hPa) �0.2–0.4% �1.1–0.4%

9.3% (0.28K) at 2-hPab 9.0% (0.34K) at 2-hPab

Specific Humidity (≥300 hPa) �0.7–0.3% �0.1–0.7%
Specific Humidity (<300 hPa) �3.4–0.5% �0.2–1.1%

9.7% (1E�8 kg/kg) at 2-hPac

Ozone Mixing Ratio �1.2–0.4% �0.6–0%
Cloud Water Mixing Ratio �2.5–1.3% �3.1–2.0%
Column Total Cloud Cover �2.2% 1.0%
Ocean Surface Wind 0.6% �0.6%

aFor variables with multiple vertical levels, bias is evaluated at each level, the range of which is indicated in the table.
bMean difference between CFSR and MERRA raw temperature is 4.1K at 2-hPa.
cMean difference between CFSR and MERRA raw specific humidity is 3E�6kg/kg at 2-hPa.
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Table 4. The Need for Orbital Sampling or Not in Various Cases Based on the Results of the Current Studya

0.5� � 0.5� 1.25� � 1.25�

Long-term
Annual Mean

Monthly
Clim.

Monthly
Means

Long-term
Annual Mean

Monthly
Clim.

Monthly
Means

Cloud Water Y Y Y N N N
Upper-level Humidity Y Y N N N N
Temperature, Lower-level Humidity, Ozone,
Cloud Cover and Ocean Surface Wind

N N N N N N

Zonal Mean of Any of the Above N N N N N N

a“Y” indicates orbital sampling is recommended, and “N” indicates orbital sampling is likely not necessary.

Figure 9. Taylor diagrams showing the results for the sensitivity tests listed in Table 3. The red “box” is
as in the 4th row of Figure 5.
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electronic, and other difficulties encountered by the satellite
instrument. Other factors need to be considered when
doing satellite–model comparisons include sensitivity and
saturation level of the instrument [Li et al., 2007], errors of
the retrieval algorithm and, for level 3 (i.e., gridded) product,
errors introduced in mapping the swath data to gridded data
[Luo et al., 2002]. For radiative fluxes, an important factor
to consider is how “clear-sky” is defined. Instead of compos-
iting over cloud-free scenes as used by satellite products,
climate models in general produce clear-sky radiative fluxes
by removing clouds and re-do the flux calculations under the
same all-sky conditions, which can result in considerable
differences compared to the satellite method [e.g., Sohn
et al.,, 2010]. Regional scale analysis is needed to evaluate
the sensitivity of the sampling effect to geographical loca-
tions (e.g., high vs. low latitudes, land vs. oceans) and sea-
sons. Orbital sampling effect in the case of multiple satellites
working in tandem [e.g., Lee et al., 2008] is worth investiga-
tion. Finally, a very important consideration is the size of the
satellite sampling errors relative to the model–observation
differences, the latter of which is often demonstrably larger,
indicating less concern regarding the satellite sampling.
Continued analyses are needed to better understand the
uncertainties and limitations in satellite–model comparisons
as observations and models improve.
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